
PHYSICAL REVIEW E 68, 016606 ~2003!
X-wave-mediated instability of plane waves in Kerr media

Claudio Conti*
NooEL, Nonlinear and Optoelectronics Laboratory, National Institute for the Physics of Matter, INFM—Roma Tre,

Via della Vasca Navale 84, 00146 Rome, Italy
~Received 18 February 2003; published 14 July 2003!

Plane waves in Kerr media spontaneously generate paraxial X-waves~i.e., nondispersive and nondiffractive
pulsed beams! that get amplified along propagation. This effect can be considered to be a form of conical
emission~i.e., spatiotemporal modulational instability!, and can be used as a key for the interpretation of the
out-of-axis energy emission in the splitting process of focused pulses in normally dispersive materials. A new
class of spatiotemporal localized wave patterns is identified. X-wave instability and nonlinear X waves are
predicted for both focusing and defocusing media and are expected in periodical Bose condensed gases.
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The dynamics of focused femtoseconds pulses~FFP! in
optically nonlinear media has a fundamental importance
it is relevant in all the applications of ultrafast optics. T
basic mechanism, when dealing with the propagation in n
mally dispersive materials, is the splitting of the pulse, wh
has been originally predicted more than ten years ago@1,2#
and recently reconsidered, due to the development of
physics of FFP@3–13#.

If z is the direction of propagation,t is the time in the

reference frame where the pulse is still and isr 5Ax21y2

the radial cylindrical coordinate, this process can be roug
divided into a series of steps. They describe the propaga
of a Gaussian~in space and time! pulse, which travels in a
focusing medium, and undergoes relevant reshaping, du
the interplay of diffraction, dispersion, and the Kerr effe
~when the peak power is sufficiently greater than the criti
powerPc for self-focusing@1,2#!: ~1! the out-of-axis energy
is focused towardsr 50 aroundt50; ~2! the pulse atr 50 is
compressed;~3! lobes appear in the on-axis temporal spe
trum; and~4! the pulse splits in the time domain.

Before the breakup, relevant out-of-axis energy emiss
and redistribution occurs, as originally described by Roth
berg in Ref.@2#. Looking at the spatiotemporal profile an
shape~or hyperbola! is observed before the splitting~see,
e.g., figures in Refs.@10,12#!. This process has been theore
cally described by different approaches@10,12,14,15#, and
the onset of an X shape can be ultimately related to
hyperbolic characteristics over which small perturbatio
evolve@16#. This can be checked, for example, by the hyd
dynamical approach to the nonlinear Schro¨dinger equation
@17,18#.

Recently, attention has been devoted to the existence
waves in optically nonlinear media. The latter are se
trapped~i.e., nondiffracting and nondispersive! waves that
are well known in the field of linear propagation in acoust
@19–22# and in electromagnetism@23–30#. The simplest X
wave has the shape of a double cone, or clepsydra, tha
pears as an X when, e.g., a section is plotted in the p
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(x,t), and as V in the plane (r ,t), as shown in Fig. 1. Optica
X waves in nonlinear media have been theoretically p
dicted in Ref.@31# and experimental results, with a dire
observation of the conical spatiotemporal shape, have c
firmed their existence and generation in crystals for seco
harmonic generation~SHG! @32,33#. In Ref. @34#, it has been
theoretically shown how, during nondepleted-pump SHG,
phase matched spatiotemporal harmonics let the SH b
become an X wave@47#.

Conical emission~CE!, or spatiotemporal modulationa
instability ~MI ! ~@14,35–37#!, has been addressed in Re
@38# as a basic mechanism underlying the spontaneous
mation of an X wave, and as a foundation for understand
the splitting, in Ref.@10#. In this paper, the formation of X
waves in Kerr media~or in quadratic media, in the regim
where they mimic cubic nonlinearity, see, e.g., the chap
after Torruellas, Kivhsar, and Stegeman in Ref.@39# and Ref.
@40#! is considered. A new form of instability of plane wave
can be introduced by directly involving self-localized sp
tiotemporal wave patterns. The process strongly resem
CE, i.e., the amplification of plane waves from noise, but
this case X waves, instead of periodical patterns, eme
from the breakup of an unstable pump beam. This mec
nism is responsible for the first stage of pulse splitting, i
the out-of-axis energy redistribution, such as MI breaks
continuous wave signal into a periodical pattern of solito
@41#.

The wave equation describing the propagation in non

/ FIG. 1. Three-dimensional~3D! plot of cX , the simplest radial-
symmetry X wave (D51).
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ear Kerr media, whose refractive indexn obeys the lawn
5n01n2I , with I as the optical intensity, in the framewor
of the paraxial and the slowly varying envelope approxim
tion, is written as

i ]ZA1 ik8]TA1
1

2k
¹XY

2 A2
k9

2
]TTA1

kn2

n0
uAu2A50,

~1!

whereA is normalized such thatuAu25I andk9.0 ~i.e., the
medium is normally dispersive!. X,Y,Z,T are the real world
variables,l the wavelength,n(l) the refractive index, and
k(l)52pn(l)/l. Equation~1! can be cast in the nondimen
sional form as

i ]zu1D'u2] ttu1xuuu2u50 ~2!

by definingz5Z/Zd f with Zd f52kW0
2 and W0

2 a reference
beam waist;D'[]xx1]yy the tranverse Laplacian with
(X,Y)5W0(x,y); t5(T2Z/Vg)/T0 the retarded time in the
frame traveling at group velocityVg51/k8 in units of T0
5(k9Zd f/2)1/2. The optical field envelopeA is given byA
5A0u, with A05(n0 /kun2uZd f)

1/2. x.0 (x,0) identifies a
focusing~defocusing! medium to ben2.0 (n2,0).

Let us start by considering paraxial linear~i.e., x50)
X-wave solutions of Eq.~2! ~paraxial X waves have bee
considered in detail in Ref.@42#!, defined by

~D'2] tt!c50. ~3!

Introducing the complex variablev5(D2 i t )21r 2, with D a
real-valued arbitrary coefficient, we have from Eq.~3!

6]vc14v]vvc50, ~4!

from which c5C1 /Av1C2 . C1 andC2 are arbitrary com-
plex coefficients. Note that both the real and the imagin
parts of this solution are real-valued X-wave profiles. T
former being the simplest X wave, given by~the branch cut
for the square root is along the negative real axis!

cX[ReS 1

Av
D 5ReS 1

A~D2 i t !21r 2
D . ~5!

Remarkably,cX still holds when referring to the Helmolt
equation, instead of the paraxial wave equation~see, e.g.,
Ref. @43#!. Its plot is given in Fig. 1.

X-wave instability can be introduced in the same way
MI, i.e., by perturbing the plane-wave solution of Eq.~2!:
a5aP[a0exp(ia0

2z), with a0 a real-valued constant. Assum
ing a5@a01e(x,y,t,z)#exp(ia0

2z) we have, at first order in
e,

i ]ze1~D'2] tt!e1xa0
2~e* 1e!50. ~6!

Writing e5e(r ,t,z)5cX(r ,t)m(z) gives

i ]zm1xa0
2~m1m* !50. ~7!

The perturbation is thus
01660
-

y
e

s

e5@a1 i ~b12xa0
2az!#cX~r ,t !, ~8!

with a and b arbitrary real-valued constants. Equation~8!
represents an X wave which grows linearly along propa
tion ~independent of the sign ofx), with amplification given
by the intensity of the plane waveaP . This situation strongly
resembles MI, where plane waves are exponentially am
fied at the expense of the pump beam, with a gain de
mined by the pump intensity. For this reason, it is natura
refer to this process as X-wave instability. As for MI, th
amplified wave can be artificially externally feeded, or it c
be generated by noise@48#. Note also that X-wave instability
can be triggered by conical emission. Indeed, as shown
Ref. @38#, the latter generates the required spectrum to fo
an X wave, which eventually gets amplified, as discus
above.

The previous treatment can be generalized in sev
ways. In particular, it is possible to show that exponen
amplification of X-wave-like beams can be attained. It
necessary to broaden the definition of X waves, i.e., Eq.~3!,
by introducing the equation

~D'2] tt!c5kc, ~9!

with k a real constant (kÞ0 in the following!. Assuminge
5m(z)c(r ,t)1n(z)* c(r ,t)* in Eq. ~6! and setting to zero
the coefficients ofc andc* , the following linear system is
obtained:

i ]zm1km1a0
2x~m1n!50,

2 i ]zn1km1a0
2x~m1n!50. ~10!

If ( m,n)5(m̂,m̂)exp(gz), we have

F ig1k1xa0
2 xa0

2

xa0
2 2 ig1k1xa0

2GF m̂

n̂
G50. ~11!

The solvability condition yields the allowed values for th

gaing56A2k(k12xa0
2). The perturbation grows alongz

if the following inequality is satisfied:2k(k12xa0
2).0.

Thus, for a focusing~defocusing! medium, generalized X
waves with 22a0

2,k,0 (0,k,2a0
2) are exponentially

FIG. 2. Gaing vs k, the parameter identifying the generalize
X wave, for focusing~thick line! and defocusing~thin line! media
(a051).
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amplified. The gain vsk, g5A2k(k12xa0
2), plotted in

Fig. 2, has a maximum value which corresponds to the m
exploding self-localized packet.

Now the question arises as to whether or not Eq.~9! ad-
mits solutions resembling X waves. Closed forms can
found by proceeding as before: In terms ofv, Eq. ~9! be-
comes

6]vc14v]vvc5kc, ~12!

whose general solution is

c5C1

exp~2Akv !

Av
1C2

exp~Akv !

Av
. ~13!

A real-valued, localized, generalized X wave is given by

ck5ReS exp~2Akv !

Av
D . ~14!

Equation~14! depends on two parametersD andk; while the
first determines the decay constant as going far from
origin in the (r ,t) plane, the latter completely changes t
shape of the wave. Examples forD51 andk51 are shown
in Figs. 3 and 4 forD51 and k521, respectively. Note
that they are similar to the Bessel pulse beams describe
Ref. @29#. To clarify the differences, we observe that t
spatiotemporal spectrum develops around the curvev25k'

2

1k, with v the angular frequency corresponding tot andk'

FIG. 3. 3D plot of the generalized X waveck when k5D
51.

FIG. 4. 3D plot of the generalized X waveck when k52D
51.
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the transversal wave number. In Fig. 5, the spectrum
differentk, with k50 corresponding to the simplest X wav
cX , is shown. The appearance of this lines in the spatiote
poral far field is a clear signature of the X-wave instabili
and can be directly observed in experiments. Note that
spectrum resemble the shape of the wave in the phys
space as a consequence of their propagation invariance

To show that X-wave instability can actually be observ
in the experiments Eq.~2! is numerically solved. A Gaussia
input beam is considered,A5A0exp@2R2/(2W0

2)2T2/(2Tp
2)#,

whose intensity profile full width at half maximum spot an
duration are 70mm and 100 fs. Equation~2! is integrated
with reference to fused silica, withl5800 nm (n051.5,
n252.5310220 k95360310228, SI units!, peak powerP
51.5Pc , beingPc5(0.61l)2p/(8n0n2)>2.6 MW the criti-
cal power for self-focusing. In Fig. 6, the spatiotempo
profile and the spectrum~in log scale! are shown after three
diffraction lengthsLd f5pn0W0

2/l. Clearly, an X-like profile
is formed and the spectrum shows the features in Fig. 5

In conclusion, it is observed that a plane wave in Ke
media gives rise to linear and exponential amplification o
waves, thus leading to a significant beam reshaping. A n
class of X waves is involved in this nonlinear process. T
reported analysis provides insights for the interpretation
pulse splitting of focused femtosecond beams, and rela
phenomena, in the same way as MI is relevant for soli
generation. Indeed, the spontaneous formation of an X w
can be another explanation for the out-of-axis energy re
tribution typically observed. Notably, X-wave instability i

FIG. 5. Spatiotemporal spectrum~transversal wave vector v
angular spectrum! for different generalized X waves~thin line, k
522; thick line, k521; squares,k51; circles k54). The
dashed line is the spectrum of the simplest X wave (k50).

FIG. 6. Results of numerical integration of Eq.~2! after three
diffraction lengths.~Left! Level plots of 10 log10(uuu2) and ~right!
level plots of the square modulus of the spectrum in log scale ou.
6-3
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expected for both focusing and defocusing media, and ca
an effective approach for the controlled generation of n
dispersive and nondiffractive pulses.

These results appear to be susceptible to several gen
zations, such as considering quadratric nonlinearity or ve
rial effects, and have implications in all the fields enco
passing nonlinear wave propagation, such as acous
hydrodynamics, and plasma physics. For example, X-w
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instability ~as well as nonlinear X waves! is also expected in
periodical Bose-Einstein condensates where Eq.~2! holds, t
being the direction of periodicity, in the presence of negat
effective mass@44,45#.
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